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Fig. 1. Le�: Stable simulation of eight walrus models (210k particles) that are pushed through a tight funnel
and impact the water in a container with 1.2M fluid particles. Right: To showcase the coupling capabilities of
our method 10 deformable solids and 4 rigid tori are dropped into a bowl while water and a highly viscous
fluid are poured on top. A total of 800k particles are used for the fluids and 252k for the elastic objects.

We develop a new operator splitting formulation for the simulation of corotated linearly elastic solids with

Smoothed Particle Hydrodynamics (SPH). Based on the technique of Kugelstadt et al. [2018] originally devel-

oped for the Finite Element Method (FEM), we split the elastic energy into two separate terms corresponding to

stretching and volume conservation, and based on this principle, we design a splitting scheme compatible with

SPH. The operator splitting scheme enables us to treat the two terms separately, and because the stretching

forces lead to a sti�ness matrix that is constant in time, we are able to prefactor the system matrix for the

implicit integration step. Solid-solid contact and �uid-solid interaction is achieved through a uni�ed pressure

solve. We demonstrate more than an order of magnitude improvement in computation time compared to a

state-of-the-art SPH simulator for elastic solids.

We further improve the stability and reliability of the simulation through several additional contributions.

We introduce a new implicit penalty mechanism that suppresses zero-energy modes inherent in the SPH

formulation for elastic solids, and present a new, physics-inspired sampling algorithm for generating high-

quality particle distributions for the rest shape of an elastic solid. We �nally also devise an e�cient method
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for interpolating vertex positions of a high-resolution surface mesh based on the SPH particle positions for

use in high-�delity visualization.
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1 INTRODUCTION

Many of the current state-of-the-artmethods for simulating �uids in computer graphics aremeshless,

either by discretizing the dynamics exclusively with particles (e.g. SPH) or in hybrid synergy with a

Eulerian discretization (FLIP, APIC, etc.). Though meshless methods are considered somewhat less

e�cient than mesh-based methods for the simulation of elastic solids, they excel in their �exibility.

A uni�ed representation for solids and �uids signi�cantly simpli�es the coupling between the

di�erent physical models involved, and furthermore facilitates state transitions, such as melting or

solidi�cation.

SPH is an established simulation method for �uids in computer graphics. Recent work has

made SPH an increasingly compelling alternative also for elastic solids. Our work extends the

state-of-the-art simulation of elastic solids with SPH in several ways.

Our main contribution is a new SPH operator splitting formulation of the corotated linear

elastic material model. The technique was initially introduced by Kugelstadt et al. [2018] for the

simulation of elastic solids with the FEM, and relies on the realization that the sti�ness matrix

can be decomposed into a sum of a constant matrix associated with the stretch forces and a time-

dependent matrix corresponding to the volume conserving terms. For many compressible objects,

the constant matrix term is generally dominating. We demonstrate that this decomposition leads to

a constant matrix for the stretching term also when we use an SPH discretization, and we introduce

an operator splitting scheme tailored to the SPH formulation for elastic solids so that the stretching

force terms are handled separately by a prefactored direct solve, while the volume conserving terms

are incorporated into a later Conjugate Gradient solve. Finally, solid-�uid coupling and solid-solid

contact handling — including self-contact — are achieved by integrating the solid particles into the

preexisting pressure solver. We demonstrate that our formulation enables more than an order of

magnitude faster time-stepping than the state-of-the-art method by Peer et al. [2018].

A well-known de�ciency of the SPH solid formulation used here is the presence of zero-energy

modes, which leads to unstable simulations in the form of strong local oscillations and an inability

to return to the rest state. Ganzenmüller [2015] introduced a control mechanism that suppresses

the zero-energy modes by introducing a correction force through explicit time integration. Inspired

by this approach, we introduce an improved zero-energy mode penalty force that conserves linear

and angular momentum, and whose sti�ness parameter can be controlled independently of the

material parameters of the solid. Unless small time steps are taken, the explicit integration used by

Ganzenmüller can itself lead to instabilities. In contrast, we ensure stability by implicitly integrating

our penalty force along with the stretching terms of the elastic model. The contributions to the

system matrix are constant in time and can therefore be included in the prefactored system matrix,

and hence have no impact on the time required to solve the linear system. We demonstrate through

multiple experiments the bene�ts of implicit zero-energy mode suppression.
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By using SPH to simulate solids, it is not necessary to obtain a high-quality simulation mesh

as is the case with the FEM. Instead only a sampling of points in the solid interior is su�cient.

This can most simply be obtained by sampling points on a regular grid and discarding points

outside the solid. However, as we show in the accompanying video, regular sampling might lead to

problematic particle con�gurations in thin features, which results in signi�cant simulation artifacts.

To alleviate this problem, we introduce a physics-inspired sampling algorithm that we demonstrate

to signi�cantly reduce the likelihood of simulation artifacts due to the particle sampling. Moreover,

we experimentally verify that our sampling method produces visually higher quality results than

the state-of-the-art blue noise sampling algorithm [Jiang et al. 2015b].

In order to visualize deformed solids, we use a high-�delity surface mesh for the rest shape that

is deformed along with the simulation. Our �nal contribution is a straightforward and e�cient

algorithm for computing vertex positions of a high-resolution mesh based on the positions of the

SPH solid particles. Our interpolation algorithm preserves the �delity of the rest pose mesh while

adhering to the deformation represented by the SPH particles.

We demonstrate that our method is suitable for use in complex, multi-physics scenarios through

several experiments, examples of which can be found in Figure 1.

2 RELATED WORK

There exists a broad range of approaches to simulate deformable objects in computer animation.

Mass-spring systems are perhaps the most simple models and were introduced in the early days of

physically based animation. They can be used to simulate deformable materials like cloth [Bridson

et al. 2002; Provot 1995] but also volumetric solids [Teschner et al. 2004]. Even today they are favored

for their ease of implementation and potentially low computational cost. However, in general, mass-

spring systems are not motivated by a continuum mechanics perspective which makes it harder

to obtain behavior that resembles common material models. Similar characteristics are shared

by shape matching [Müller et al. 2005] and other position based dynamics approaches [Müller

et al. 2006]. They were successfully used to build uni�ed frameworks to simulate rigid bodies,

deformables and �uids, as presented for example by Macklin et al. [2014]. For an overview of these

methods we refer to the survey of Bender et al. [2017].

For our use case we will focus on methods that are directly derived from continuum mechanics

theory. One of the most wide-spread approaches in this category is FEM. For a general overview

covering FEM we refer to the tutorial by Sifakis and Barbic [2012] or the survey by Nealen et

al. [2006]. This publication in particular builds upon previous work by Kugelstadt et al. [2018] who

presented a fast operator-splitting method for the simulation of corotated linear elastic deformables

with FEM. As mentioned earlier, one core contribution of this work is to adapt this approach to a

particle-based discretization using SPH.

SPH. Smoothed particle hydrodynamics is a popular particle-based method from the �elds of

computational physics and �uid mechanics [Ganzenmüller 2015; Monaghan 2012] adopted by

the graphics community originally for materials with large inelastic deformations [Desbrun and

Gascuel 1996]. A vast amount of research in the �eld of computer animation proposes extensions

or improvements for di�erent aspects of SPH �uid simulations. This includes works on implicit

pressure solvers [Bender and Koschier 2017; Cornelis et al. 2019; Ihmsen et al. 2014; Weiler et al.

2016], and implicit viscosity formulations [Peer et al. 2015; Weiler et al. 2018]. Considering the great

results obtained with SPH for �uids, it was a natural step to experiment with uni�ed simulators

that support other materials and phases. Notable contributions in this direction, in particular for

robust interaction of SPH �uids and rigid bodies are the works by Akinci et al. [2012], Akbay et
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4 Kugelstadt et al.

al. [2018] and especially the recent work on strong coupling by Gissler et al. [2019]. For a general

overview of SPH we refer to the tutorial by Koschier et al. [2019].

In the context of deformable solids, Solenthaler et al. [2007] proposed to use SPH to evaluate

the deformation gradient to model a linear elastic material. As the standard SPH formulation

is not 1st-order consistent [Bonet and Lok 1999], the resulting deformation gradients were not

rotationally invariant. This resulted in artifacts, speci�cally forces counteracting the rotations.

Becker et al. [2009] instead proposed to use shape matching to determine the deformation gradient

and employed corotated linear elasticity combined with explicit time integration. Instead of shape

matching, Peer et al. [2018] again proposed an entirely SPH based formulation that addressed the

known issues. They resorted to a kernel gradient correction proposed by Bonet and Lok [1999]

which ensures that the SPH gradients are 1st-order consistent. Peer et al. also use a corotated

formulation combined with implicit time integration allowing for large time steps. An implicit

SPH pressure solver enforces incompressibility and allows coupling with �uids. Instead of relying

entirely on SPH, Abu Rumman et al. [2019] developed a method for coupling PBD deformables with

SPH �uids. They introduced a free-surface formulation that does not explicitly depend on a surface

or volumetric particle sampling of the deformables. This is relatively fast and interactive simulations

can be achieved but also shares the downsides of PBD deformables, that it is di�cult to model

common elastic materials. Further works that couple SPH with other methods for the simulation of

deformables include the papers of Dagenais et al. [2012] who used a predictor-corrector approach

with shape matching and Huber et al. [2015] who presented a coupling method for cloth with SPH

supporting wetting and no-slip boundary conditions. Recently, Gissler et al. [2020] proposed a

solver for the simulation of compressible elastoplastic snow. They introduced a compressible SPH

pressure solver which is coupled with a linear implicit elasticity solver inspired by the work of

Peer et al. but adapted for plasticity.

Alternative approaches. In recent years, the material point method (MPM) gained popularity in

the graphics community for multi-material simulations due to its versatility as demonstrated for

example by Stomakhin et al. by simulating snow and phase change of materials [Stomakhin et al.

2014]. MPM is a hybrid Eulerian and Lagrangian method that transfers quantities back and forth

between a particle and a grid representation. Early problems with large dissipation or instabilities

due to the transfer were addressed by the APIC method by Jiang et al. [2015a]. A large amount of

publications explores MPM for various uses cases with multi-material or multi-phase simulations

for example frictional contact [Han et al. 2019], liquid-solid coupling [Fei et al. 2019, 2018, 2017]

and strong nonlinear coupling without MPM-typical sticking [Fang et al. 2020]. With SPH we are

instead using a purely Lagrangian approach which also avoids problems like arti�cial plasticity

that might arise when relying on a hybrid method without special care.

Inspired from computational physics, models based on peridynamics theory were also introduced

to the �eld of computer animation. At its core, peridynamics is a continuum based method using

global integral equations which can be discretized using particles. It is especially well suited for

simulating fracturing [Chen et al. 2018; Levine et al. 2014] but can also be used for elastoplastic,

viscous and granular materials [He et al. 2018].

Another category of methods are particle-based formulations using MLS interpolation. First

introduced in the �eld of physically based animation by Müller et al. [2004], a typical MLS-based

method uses least squares to �t polynomials of arbitrary order to a quantity in a particle’s neigh-

borhood. Due to the possible higher order of the polynomials this allows more accurate evaluations

than in standard SPH formulations. MLS was proposed for elastic deformables [Keiser et al. 2005],

plasticity [Gerszewski et al. 2009; Jones et al. 2014; Zhou et al. 2013], fracturing [Pauly et al. 2005],

uni�ed volumetric, shell and rod simulation [Martin et al. 2010] and multi-phase simulation [Chen
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et al. 2020]. However, the higher-order approaches increase complexity, can be signi�cantly more

expensive and without special care, degenerate particle con�gurations can also introduce problems.

Overall, the SPH approach with the kernel gradient correction we use is quite similar to a 1st-order

MLS interpolation. Therefore, we believe that our approach can also be adapted to be used in an

MLS-based simulator. For now, our goal was to couple a fast simulation of deformables with other

recent advances speci�cally from the SPH community.

3 ELASTIC MODEL

This section introduces the continuum formulation of deformable solids and an SPH discretization of

the corresponding forces. In Section 4 we discuss the problem of zero-energy modes and introduce

a novel implicit method for zero-energy mode suppression. Our e�cient time discretization using

operator splitting is introduced in Section 5. Finally, we discuss solid-�uid coupling, our particle

sampling method and mesh skinning in Sections 6, 7 and 8.

3.1 Continuum Formulation

To simulate deformable objects we will employ the total Lagrangian formulation of SPH. This

means the equations of motion and the constitutive laws are described using the positions in the

undeformed rest pose, the so called reference coordinates X. The deformed positions x of a body at

time C can be found with the deformation mapping x = q (X, C) (see [Sifakis and Barbic 2012] for

more details). Elastic energies are usually expressed in terms of the deformation gradient F which

can be found by taking the derivative of the deformation mapping w.r.t. the reference positions X:

F =

mx

mX
. (1)

In the following we use the corotated linear constitutive model with the elastic energy density

[Sifakis and Barbic 2012]

Ψ = ` ∥ F − R ∥2� +
_

2
tr(R) F − 1)2, (2)

where R is the rotational part of the deformation gradient which can be computed using a polar

decomposition, 1 is the identity matrix, ∥ · ∥� denotes the Frobenius norm, and ` and _ are the

Lamé parameters. The �rst term results in an elastic response to stretching and compression in

the individual spatial directions and the second term models resistance to volume changes of the

material. The total deformation energy of a body can be found by computing the integral of the

energy density over the rest-pose domain Ω of the body

� =

∫
Ω

Ψ (F(X)) 3X. (3)

3.2 SPH Discretization

In order to evaluate the elastic energy and forces numerically, we apply a spatial discretization

using SPH. To do so, we sample the undeformed body with = equally sized particles (for details see

Section 7) which store the values of the �eld quantities at their respective positions. This allows us

to interpolate an arbitrary �eld quantity �(X) at position X8 as

�(X8 ) ≈
∑
9∈N0

8

+9�(X9 ), (∥ X8 − X9 ∥, ℎ), (4)

where, is a radially symmetric kernel function with compact support, ℎ is the smoothing length

of the kernel andN 0
8 is the set of particles which are inside the support radius of the kernel when it

is centered at X8 . The superscript 0 inN 0
8 indicates that we take the rest-pose neighbors. The set of
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6 Kugelstadt et al.

neighbors in the current pose will be denoted as N8 . Assuming all particles have the same mass, +9

is the rest-pose volume of the particle with index 9 which is computed as [Solenthaler et al. 2007]

+8 =
1∑

9∈N0
8

, (∥ X8 − X9 ∥, ℎ)
. (5)

In the following we will use a shorter notation for the function arguments �8 = �(X8 ) and

,8 9 =, (∥ X8 − X9 ∥, ℎ). Note that �8 and,8 9 always mean that we evaluate the function using

the rest-pose positions.

Derivatives can be computed by applying the di�erential operator to the kernel function such

that the gradient becomes

∇�8 =
m�8

mX8

≈
∑
9∈N0

8

+9� 9∇,8 9 . (6)

With this approximation we can compute the deformation gradient of a particle with index 8 by

plugging in the components of the deformed positions x for �. However, it was pointed out by

Bonet and Lok [1999] that this approximation leads to erroneous deformation gradients because

it is not 1st-order consistent, i.e. it cannot guarantee that linear functions are reproduced exactly.

Peer et al. [2018] demonstrated that this leads to artifacts so that the bodies cannot rotate. This

problem can be overcome by constructing a 1st-order consistent discretization of the SPH gradient

operator [Bonet and Lok 1999]:

∇�8 ≈
∑
9∈N0

8

+9 (� 9 −�8 )L8∇,8 9 (7)

with the 3 × 3 kernel correction matrix

L8 =
©­«
∑
9∈N0

8

+9∇,8 9 ⊗ X98
ª®¬
−1

, (8)

whereX98 = X9 −X8 and ⊗ denotes the dyadic product of two vectors a⊗b = ab
) . The derivation of

the matrix can be found in the supplemental document. For the Lagrangian SPH formulation it only

depends on the rest-pose positions such that it can be precomputed and stored at the beginning of

the simulation.

The deformation gradient of particle 8 can be found by plugging in the components of the

positions of the deformed state for � [Peer et al. 2018]:

F8 =

∑
9∈N0

8

+9x98 ⊗ L8∇,8 9 , (9)

where we introduced the short notation x98 = x9 − x8 . Note that in contrast to the common

SPH formulation for �uids we are summing over the particle neighborhoods from the rest-pose

con�guration and the volume +9 and the corrected kernel gradient are also evaluated in the rest-

pose.
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The integral in the elastic energy (3) can be split up into integrals over the individual particle

volumes and these can be approximated by applying a simple one point quadrature resulting in

� =

∑
8

∫
+8

Ψ (q (X)) 3X

≈
∑
8

`8+8 ∥ F8 − R8 ∥
2
� +

∑
8

_8+8

2
tr(R)8 F8 − 1)

2

= �s + �v.

(10)

Here we introduced the notation �s for the stretching part and �v for the part of the elastic energy

related to volume conservation.

3.3 Stretching Forces

In order to compute the stretching forces we rewrite the stretching energy �s from Eq. (10) of one

particle with index 8 as [Kugelstadt et al. 2018]

�s8 (x) = `8+8 ∥ vec(F8 ) − vec(R8 ) ∥
2, (11)

where we vectorize the 3 × 3 matrices by concatenating the columns into 9d vectors. Now the

deformation gradient can be expressed as a matrix-vector product

D8x = vec(F8 ) =
∑
9∈N0

8

+9
©­
«
x98 (L8∇,8 9 )1
x98 (L8∇,8 9 )2
x98 (L8∇,8 9 )3

ª®¬
, (12)

where (·): denotes the :-th component of a vector. More details about the computation of matrix

D8 can be found in the supplemental document.

With this notation we can write the sum for the total stretching energy as a matrix-vector

product as well

�s (x) =
∑
8

`8+8 ∥ D8x − vec(R8 ) ∥
2
= ∥ K1/2 (Dx − r) ∥2, (13)

where the matrix D ∈ R9=×3= contains all matrices D8 stacked on top of each other, r contains all

vectorized rotations concatenated into one vector, and K = diag(`1+119×9, · · · , `=+=19×9). Now,

we can compute the forces as

f
s
= −

m�s

mx
= −2D)

KDx + 2D)
Kr. (14)

Because the matrix D only depends on the rest-pose positions it will be constant during the

simulation (see supplemental document).

3.4 Volume Conserving Forces

Finally, we have to compute the volume conserving forces by taking the negative gradient of �v

w.r.t. x8 :

f
v
8 =

∑
9

+9

mΨv
9

mx8
= +8

mΨv
8

mF8
:
mF8

mx8
+

∑
9∈N0

8

+9

mΨv
9

mF9
:
mF9

mx8
, (15)

where Ψv
8 denotes the volume conserving part of the energy density in Eq. (2). The derivative of

the energy density w.r.t. the F is known as the �rst Piola-Kirchho� stress tensor [Sifakis and Barbic
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2012]

P8 =
mΨv

8

mF8
= _8 tr(R

)
8 F8 − 1)R8 . (16)

The derivatives of the deformation gradient result in the third-order tensors

mF8

mx8
= −

∑
9∈N0

8

+91 ⊗ L8∇,8 9 ,
mF9

mx8
= +81 ⊗ L9∇,98 . (17)

Using the relationA : 1⊗b = Ab for a 3×3matrixA and a 3d vector b results in the forces [Ganzen-

müller 2015]

f
v
8 =

∑
9∈N0

8

+8+9 (P8L8∇,8 9 − P9L9∇,98 ). (18)

4 ZERO-ENERGY MODES

The one point quadrature approximation used in Eq. (10) has the advantages that it is simple and

it leads to very e�cient computations. However, it can cause visual artifacts due to the so called

zero-energy modes [Ganzenmüller 2015], a similar problem to the hourglass modes known in FEM

simulations. Using only one quadrature point for each particle neighborhood means that we take

only one constant deformation gradient to describe the deformation of the particle neighborhood.

The 9 components of F8 can only account for linear deformation. But the actual neighborhood

usually consists of 30-40 particles such that it can in principle take on more complicated non-linear

deformations. In practice this happens, e.g. due to strong deformations which are induced by

boundary conditions or collisions. Since the non-linear part of the deformation is not captured by

the deformation gradient, it does not contribute to the elastic energy (hence the name zero-energy

modes) and prevents that the particles return into their rest-pose.

One way to avoid zero-energy modes is to use more quadrature points. However, it is not trivial to

�nd out where the additional quadrature points have to be placed when the particle sampling in the

rest pose is irregular as pointed out by Ganzenmüller [2015]. Moreover, the additional quadrature

points drastically increase the computation costs.

4.1 Implicit Zero-Energy Mode Suppression

An alternative solution is to compute additional forces in order to suppress the zero-energy modes

as suggested by Ganzenmüller [2015]. Inspired by his method we derive additional penalty forces

to counteract the zero-energy modes without the need for additional quadrature points. In contrast

to Ganzenmüller’s explicit method which is only conditionally stable, we propose an implicit

approach.

Our goal is to penalize the non-linear part of the deformations so that we obtain deformations

which can be accurately captured by the deformation gradients of the particles. The non-linear part

can be found by subtracting the total deformation from the linear deformation. We consider the

line segment which is formed by two particles with indices 8 and 9 . To apply the linear deformation

we multiply its rest pose positions with the deformation gradient while the non-linear deformation

is given by the relative position in the current pose. This results in the error

E8 9 = F8X8 9 − x8 9 . (19)
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Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control 9

We de�ne a quadratic energy to penalize this error for each particle by computing the SPH average

of ∥ E8 9 ∥
2 using Eq. (4). To obtain the total energy we take the sum over all particles

�ze =
U

2

∑
8

`8+8

∑
9∈N0

8

+9

∥ E8 9 ∥
2

∥ X8 9 ∥2
,8 9 , (20)

where U is a user de�ned sti�ness parameter. We divide E8 9 by ∥ X8 9 ∥ so that it becomes a

dimensionless strain and we multiply with `8+8 so that the correction forces are proportional to the

elastic forces and the U parameter becomes independent of the material sti�ness.

We remark that our method is not just the result of direct implicit integration of the force

proposed by Ganzenmüller. In order to conserve angular momentum, Ganzenmüller argues that it

was necessary to project the error E8 9 onto the line between the two particles. Since we instead

de�ne a translation-invariant and rotation-invariant penalty energy based on E8 9 , we obtain a force

expression that does not require projection of the error. Because of Noether’s theorem the rotational

invariance means that the penalty forces derived from this energy will preserve angular momentum.

Linear momentum is preserved as well since the energy is translation invariant. This can be easily

seen because only position di�erences x8 9 are considered which are invariant to translations of the

particles.

To see that the energy is rotation invariant, consider the case when the current positions x8 of

all particles are rotated with the rotation matrix R. Then the deformation gradient becomes RF8 as

we see in Eq. (9) and the error becomes RE8 9 for all 8 and 9 . Because we take the squared norm of

the error to obtain the energy in Eq. (20) and the norm is rotation invariant the energy is rotation

invariant as well.

4.2 Zero-Energy Mode Forces

To derive the forces for the zero-energy mode suppression we also rewrite the corresponding

energy as a matrix-vector product. First, we rewrite the error vectors E8 9 from Eq. (19) as a product

of a constant matrix with the positions x:

E8 9 =

∑
:∈N0

8

+:x:8 (L8∇,8: )
)
X8 9 − x8 9 = H8 9x. (21)

Details about the computation of the matrix H8 9 can be found in the supplemental document.

With this notation we can rewrite the sum over all neighbors in Eq. (20) as a matrix vector

product

�ze =
1

2

∑
8

∑
9∈N0

8

x
)
H
)
8 9 K̃8 9H8 9x =

1

2

∑
8

x
)
H
)
8 K̃8H8x, (22)

by concatenating the H8 9 matrices for all neighbors into one matrix H8 = (H)
81, ...,H

)
8=8

)) where

=8 is the number of neighbors of particle 8 . The constant factors are encapsulated in the diagonal

matrices K̃8 9 = U`8+8+9,8 9/∥ X8 9 ∥
2
1 which are combined into K̃8 = diag(K̃81, ..., K̃8=8 ). The same

can be done with the sum over all particles 8 so that we get

�ze (x) =
1

2
x
)
H
)
K̃Hx, (23)

with H = (H)
1 , ...,H

)
= )

) and K̃ = diag(K̃1, ..., K̃=). The forces are computed as the negative gradient

of the energy:

f
ze
= −

m�/�

mx
= −H)

K̃Hx. (24)
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10 Kugelstadt et al.

Note that the matrices H and K̃ only depend on the rest-pose positions and the sti�ness parameters

such that they are constant during the simulation (see supplemental document).

5 TIME DISCRETIZATION

The elastic energy � = �s + �v + �ze consists of three terms: stretching �s, volume conservation �v

and the zero-energy mode penalty �ze. We make the commonly used assumption that the rotation

is computed at the beginning of each time step and kept constant during the step. Then, all energy

terms are quadratic in x such that we will obtain forces that are linear in the positions and result in

the following linear system per backwards Euler step:

MΔv = ΔC
(
f
ext + f

s (x=+1) + f
v (x=+1) + f

ze (x=+1)
)
, (25)

x
=+1

= x
= + ΔC (v= + Δv). (26)

Here, M = diag(<11,<21, ...,<=1) is a diagonal mass matrix, v contains the velocities, x the

positions and f
ext the external forces of all particles, ΔC is the time step size, and the superscript

= / = + 1 denotes the current / next time step. Solving for the velocity changes Δv is convenient

because for static particles they are 0. This means that some particles can be �xed by removing the

corresponding equations from the linear system.

5.1 Operator Spli�ing

In the context of corotated FEM Kugelstadt et al. [2018] observed that the stretching term has

a constant sti�ness matrix when the Lamé parameters are constant. The sti�ness matrix of the

volume conserving term changes in every time step because of the changing rotation matrices.

This is also true when we use our SPH discretization since the stretching force in Eq. (14) linearly

depends on x while the volume conserving force in Eq. (18) also depends on the rotation matrix.

Our zero-energy mode term also has a constant sti�ness matrix (cf. Eq.(24)). This observation can

be used to speed up the simulation by applying operator splitting and solving the terms with the

constant system matrix with a direct solver by using a precomputed Cholesky factorization. The

remaining volume conservation term is solved with a conjugate gradient (CG) solver. Our results

show that this approach is much faster than solving the whole system with CG.

First, we solve the system without considering the volume conservation term to determine the

velocity updates Δv

MΔv = ΔC
(
f
ext + f

s (x̃ + ΔCΔv) + f
ze(x̃ + ΔCΔv)

)
, (27)

which are used to �nd the intermediate velocities v∗ = v
=+Δv. Here x̃ = x

=+ΔCv= . In a next step we

solve the linear system for the volume conserving term to obtain the new velocities v=+1 = v
∗ +Δv∗:

MΔv
∗
= ΔCfv (x∗ + ΔCΔv∗), (28)

with x
∗
= x

= + ΔCv∗. Note that before solving the second linear system (28) we recompute the

required rotation matrices using the updated positions x∗ in order to consider the changes due to

the solve of the �rst system (27) (cf. Algorithm 1).

Stretching and Zero-Energy Mode Term. Plugging the forces into Eq. (27) yields the linear system(
M + 2ΔC2D)

KD + ΔC2H)
K̃H

)
Δv = ΔC

(
f
ext − 2D)

K(Dx̃ − r) − H
)
K̃Hx̃

)
. (29)

Here we see that the system matrix is constant as long as the time step size, the Lamé parameters

and the parameter U do not change. This means that we can precompute its Cholesky factorization

so that we can solve the linear system very e�ciently at runtime with linear complexity in the

number of non-zeros in the triangular factor by using backward and forward substitution. Note that
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Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control 11

the components G ,~ and I are independent of each other. Hence, the system can be solved in parallel

per component and per body. Because the matrix H has the same sparsity pattern as D, adding

the zero-energy mode suppression does not add non zeroes to the Cholesky factorization, and

therefore it does not negatively in�uence the time to solve the linear system. We will discuss later

how we can use adaptive time stepping even though a �xed time step is used in the precomputed

factorization.

Volume Conservation Term. In order to construct the linear system for the volume conservation

term, we split the volume conserving force in Eq. (18) into a constant term f
2
8 and a linear term

f
;
8 (x) so that fv8 (x) = f

2
8 + f

;
8 (x):

f
2
8 =

∑
9∈N0

8

+8+9 (3_8R8L8∇,8 9 − 3_ 9R 9L9∇,98 ),

f
;
8 =

∑
9∈N0

8

+8+9 (_8 tr(R
)
8 F8 )R8L8∇,8 9 − _ 9 tr(R

)
9 F9 )R 9L9∇,98 ).

The force f28 is constant since we keep the rotation constant during the step. The linear system for

backwards Euler from Eq. (28) becomes

MΔv
∗ − ΔCf; (ΔCΔv∗) = ΔC (f; (x∗) + f

2 ). (30)

The linear part of the forces depends on the rotation matrices so that the system matrix changes in

every time step. Hence, we cannot use a precomputed factorization. Because it is very expensive to

compute the Cholesky factorization at runtime we will solve this system with an iterative CG solver.

We can avoid building the full system matrix because CG only requires products of the matrix with

a given vector. These can be computed e�ciently by evaluating the linear part of the forces. To do

so we iterate twice over all particles and their neighbors. In the �rst loop we compute the stress

tensors for all particles and in the second one we evaluate the forces. To speed up the convergence

we use the velocity increments Δv∗ from the last time step as an initial guess to warm-start our

matrix-free CG solver.

6 COLLISIONS AND SOLID-FLUID COUPLING

We integrate the solid solver into an SPH �uid simulation framework as shown in Algorithm 1. For

our experiments we used the DFSPH method [Bender and Koschier 2017] but it would work in the

same way for other methods like IISPH [Ihmsen et al. 2014] or position-based �uids [Macklin and

Müller 2013]. We have two sets of particles, one for the �uid and one for the solids. The coupling is

achieved by including the solid particles into the pressure solver which enforces a constant particle

density and a divergence-free velocity �eld. This prevents �uid particles from entering the solids

and accounts for collisions and self-collisions of the solids. We �rst apply external and elastic forces

as well as other non-pressure forces and perform the pressure solve at the end of the time step such

that we have a collision free state after the step.

It is common practice that SPH �uid solvers use adaptive time steps based on a CFL condition

to prevent artifacts due to collocated particles. However, the system matrix of the solid solver in

Eq. (29) depends on the time step so that we cannot change ΔC in every simulation step because

computing the Cholesky factorization is expensive. Therefore, we use di�erent time steps for the

solid and the �uid which was proposed by Peer et al. [2018] and is similar to the asynchronous SPH

approach of Reinhardt et al. [2017]. While the step size ΔCel of the elasticity solver stays constant,

the time step ΔC of the pressure solver is determined using the CFL condition ΔC = 0.43/∥v∥∞,

where 3 is the particle diameter. To implement this we transform the velocity changes determined

by the elasticity solver into accelerations and then interpolate the �nal velocities using the time
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12 Kugelstadt et al.

Algorithm 1 Coupled solid-�uid solver

1: perform neighborhood search

2: apply non-pressure forces to get v=

3: x̃ := x
= + ΔCelv=

4: compute rotations R8 using x̃

5: Solve Eq. (29) for Δv ⊲ solve stretching and ZE terms using precomp. Cholesky fact.

6: v∗ := v
= + Δv

7: x∗ := x
= + ΔCelv∗

8: compute rotations R8 using x
∗

9: Solve Eq. (30) for Δv∗ ⊲ solve volume conservation term using matrix-free CG

10: v∗∗ := v + Δv
∗

11: a = (v∗∗ − v
=)/ΔCel

12: v=+1 = v
= + ΔCa

13: pressure solve using DFSPH

step size ΔC (see Algorithm 1, lines 11 & 12). Figure 1 shows complex experiments which were

performed with this time stepping scheme.

7 SAMPLING

In order to simulate elastic solids with SPH we need to sample the solid volume with particles. We

assume that the solids are given as closed surface meshes or as signed distance �elds (SDF). When

they are given as meshes we convert them into SDFs using the methods described by Koschier et

al. [2017]. Then we create a regular sampling by placing a regular grid inside the bounding box of

the object. The grid spacing is equal to the particle radius A . For each grid node which is inside the

solid geometry we create a particle with radius A . The inside or outside test can be easily performed

by querying the SDF.

A regular sampling can be used to simulate solids, however, it can lead to some problems.

First, �ne surface details of the input geometry are not well represented by this type of sampling,

especially when the sampling is coarse. Moreover, �ne features of the geometry may lead to co-

linear or co-planar particle neighborhoods, which are problematic because their kernel correction

matrices in Eq. (8) become singular and cannot be inverted.

In the following we propose a novel sampling technique that signi�cantly alleviates these

problems. It is inspired by the blue noise sampling method presented by Jiang et al. [2015b] which

takes an initially dense regular sampling and re�nes it using an explicit SPH pressure solver. In

our work we use an implicit pressure solver for the sampling to avoid instabilities. The pressure

solve makes sure that we get a particle distribution which is bene�cial for the pressure solver that

is used in the actual simulation. Jiang et al. [2015b] apply correction and cohesion forces to make

the surface particles coherent with the interior particles. In our work we use a di�erent cohesion

force which aims at obtaining a homogeneous particle distribution. Moreover, we add an additional

adhesion force which pulls particles to the surface to get a better representation of �ne features

of the geometry. Finally, this gives us better results than the method of Jiang et al. [2015b] as we

show in Section 9.

Starting with a dense regular sampling we re�ne it iteratively by applying the following position

changes Δx8 :

Δx8 = Δx
pressure
8 + Δx

cohesion
8 + Δx

adhesion
8 . (31)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 4, No. 3, Article . Publication date: September 2021.



Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control 13

The pressure term enforces a constant particle density d8 which is computed as

d8 =
∑
9∈N8

<, (x8 9 ), (32)

where< is the mass which is equal for all particles. The displacements are computed using the

constant density solve of the DFSPH method [Bender and Koschier 2017]

Δx
pressure
8 = −

∑
9∈N8

< 9

(
^8

d8
+
^ 9

d 9

)
∇, (x8 9 ), (33)

where

^8 =
d8 (d8 − d0)

∥
∑

9∈N8
< 9∇, (x8 9 )∥2 +

∑
9∈N8

∥< 9∇, (x8 9 )∥2
. (34)

The cohesion displacement is similar to a spring force which enforces that the particles in each

neighborhood have the same distance of one particle diameter 3 to each other

Δx
cohesion
8 = −V

∑
9∈N8

+9

(
∥x8 − x9 ∥ − 3

) x8 − x9

∥x8 − x9 ∥
, (x8 9 ), (35)

where V is the cohesion coe�cient. This displacement improves the particle distribution especially

at the free surface, where the pressure solver cannot �nd an optimal solution due to the particle

de�ciency problem.

If a particle x8 is closer to the surface than the support radius, we compute the closest point on

the surface xB and add an attractive displacement

Δx
adhesion
8 = −W+8 (x8 − xB ), (x8 − xB ), xB = x8 − Φ(x8 )

∇Φ(x8 )

∥∇Φ(x8 )∥
, (36)

where W is the adhesion coe�cient and Φ(x8 ) is the SDF with the convention that distances inside

of the solid are negative. The adhesion pulls particles which are close to the surface towards the

surface such that they align with �ne features of the geometry.

In each iteration the positions are updated using the total displacements Δx

x
=+1

= x
= + [

0.43

∥Δx∥∞
Δx, (37)

where [ is the CFL factor for which we use 0.25 as default value. After each iteration we apply

collision response displacements which prevent the particles from leaving the solid volume. Using

the SDF we project particles which are outside of the volume or closer to the surface than the

particle radius back such that the particles are exactly touching the surface from inside.

When the position change is small enough, we can stop the iterative process. Our SPH re�ne-

ment results in a high quality particle distribution which considerably reduces the occurrence of

degenerate con�gurations and particles with low numbers of neighbors.

8 MESH SKINNING

For rendering we want to skin a high resolution surface mesh to the particles of the deformable

solid. This can be performed during the simulation or as a post-processing step. In a preprocessing

step we determine the neighboring SPH solid particles for each vertex of the visualization mesh.

We also precompute the Shepard �lter factors B: for each vertex x: of the visualization mesh

B: =

1∑
9∈N0

:

+ 0
9, (X: 9 )

. (38)
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14 Kugelstadt et al.

Fig. 2. Comparison between our method (le�) and the method by Peer et al. (right) in an experiment where
the bo�om particles of a sampled bunny follow a prescribed motion. The material behavior obtained with
both methods is comparable.

Similar to the kernel correction matrix they are needed to obtain a 0th-order consistent SPH

interpolation of the function itself instead of the gradient [Reinhardt et al. 2019]. For every frame

of the simulation we can interpolate the vertex positions of the simulation mesh from the deformed

SPH particles as

x: = B:

∑
9∈N0

:

+9

(
F9X8 9 + x9

)
, (X8 9 ). (39)

This interpolation can be evaluated very fast and it leads to much better visual results than surface

reconstructions with marching cubes.

9 RESULTS

In this section we discuss experiments to validate our method and to compare it with existing

solutions. All contributions of this publication were implemented in the open-source SPH frame-

work SPlisHSPlasH [Bender et al. 2021]. The solid-�uid solver relies on the already implemented

Divergence-Free SPH method [Bender and Koschier 2017] as the pressure solver, Volume Maps [Ben-

der et al. 2020] for the boundary handling, a Micropolar method [Bender et al. 2019] to counteract

numerical damping in the �uid, and the Analytic Polar Decomposition method by Kugelstadt [2018]

to extract the rotations from the deformation gradient.

We used Eigen [Guennebaud et al. 2021] for all the required linear algebra functionalities,

including the Cholesky factorization and the matrix-free CG solver. Important bottlenecks in all

the methods have been optimized using single precision AVX2 instructions whenever possible.

While other methods can be parallelized across particles, this is not the case for the Cholesky solve

in our method since it requires backward and forward substitution of the corresponding triangular

matrices. Despite those operations being hard to parallelize beyond using SIMD instructions, we

can still use parallelization to great extent by solving the linear systems concurrently per body and

per dimension (G , ~ and I), since they are independent of each other.

Comparison with Peer et al. [2018]. We simulated a moving elastic bunny that follows a prescribed

trajectory and compare our method to the method by Peer et al. (see Figure 2). Unless otherwise

speci�ed, the bunny is discretized with 32k particles of radius 0.0127m, using a Young’s modulus

of 1MPa, a Poisson’s ratio of 0.33 and 2ms time step size. All tests related to this experiment

were run on an Intel Core i7-7700K Processor with 4 physical cores and 8 threads at 4.20GHz. The

experiments always use all available cores.

In Table 1 we can see the benchmark results with varying particle sampling resolution. The

times correspond to the average runtime in milliseconds required per time step. We observe that

our method is superior in terms of performance to the method proposed by Peer et al. for all the

resolutions tested. The substantial speedup factor is a direct consequence of using a precomputed
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Particles Ours
Peer

Speedup
nnzs Memory

et al. ×106 [MB]

4208 6.9 144 20.9x 2.52 19.28

8208 19.2 362 18.9x 7.59 58.01

16193 61.5 895 14.9x 27.80 212.16

31749 179 2102 11.7x 86.41 659.34

64055 507 5994 11.8x 284.88 2173.74

Table 1. Comparison of the moving bunny simulation runtimes and memory requirements with varying
number of particles. The table shows the average computation times per time step (in ms), the speedup
factors, the number of non zeros of the lower triangular matrix resulting from the Cholesky factorization and
the space needed to store it.

factorization instead of an iterative solver for the most time consuming step of the simulation:

the implicit solve of the stretching forces and the zero-energy mode correction. However, storing

the Cholesky factorization entails larger memory requirements than methods that use a pure

matrix-free iterative solver. The fact that the memory requirements scale superlinearly with the

number of particles is due to a higher �ll-in of the triangular matrix obtained from the Cholesky

decomposition, which is also the reason behind the decreasing speedup factor. In any case, the

runtime gap is still very large, ranging from a speedup of 20.9x for the coarsest model to 11.8x for

the highest detailed one. Also, it is important to remark that only one factorization per unique

object has to be stored since the decomposition is computed at rest pose and it is invariant to rigid

translations and rotations.

For the sake of the comparison we followed the common practice in SPH of using a compact

support radius that results in approximately 30 neighbors per particle. However, we observed that

elastic solids can also be simulated with less neighbors. By using the closest 10 neighbors per

particle instead of the full neighborhood, we reduced our memory requirements by a factor of 2.5,

while obtaining visually identical results. Naturally, the runtime also improved, by a factor of 2, but

so does the method by Peer et al., therefore we do not include a comparison table for that case.

Table 1a shows the benchmark results for the moving bunny simulation with varying Young’s

modulus. There is a strong correlation between increasing material sti�ness and the speedup factor

with respect to the method by Peer et al. This is can also be attributed to our direct Cholesky

solve which performs a �xed amount of operations. An iterative linear solver instead needs more

iterations to converge when the material sti�ness is increased due to a larger condition number

of the system. Table 1b contains the results for the moving bunny simulation using di�erent time

step sizes, which shows the same trend observed in the experiment with varying Young’s modulus.

When an iterative solver is used, employing larger time steps will require more iterations due to

poorer conditioning and a worse initial guess. Neither of those issues are relevant when a direct

solver is used. These two experiments highlight an important property of our solver, which is that

it has a very consistent runtime without sacri�cing accuracy, in contrast to methods which use

iterative solvers.

Zero-energy mode correction. To showcase the importance of our implicit zero-energy mode correc-

tion, we carried out an experiment where the particles of a walrus model are randomized to induce

an initial deformed state (see Figure 3). We used 50k particles with a radius of 0.025m, a Young’s

modulus of 2.5MPa, a Poisson’s ratio of 0.33, a time step size of 1ms, U = 1 in the case of zero-energy

mode correction and U = 0 in the case without correction. By employing the zero-energy mode
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(a) Varying values of Young’s modulus

� [MPa] Ours Peer et al. Speedup

0.1 123 805 6.5x

0.5 155 1583 10.2x

1.0 179 2102 11.7x

5.0 255 3878 15.2x

10.0 338 4930 14.6x

(b) Varying time step sizes

ΔC [ms] Ours Peer et al. Speedup

1 134 1152 8.6x

2 179 2102 11.7x

5 301 4629 15.4x

10 479 8712 18.2x

15 433 12894 29.8x

Table 2. Comparison of the moving bunny simulation runtimes (in ms).

Fig. 3. Randomized particles experiment. From le� to right: Initial deformed configuration, no zero-energy
mode control, zero-energy mode control. The original shape is recovered using our zero-energy mode correc-
tion.

correction, the original shape can be recovered even after such strong deformation. With correction

enabled, the elasticity solve required an average of 75.9ms per time step. This measurement and all

subsequent measurements were obtained using an Intel Core i9-9900KF processor with 8 physical

cores and 16 threads.

Our experience is that for modest values of U , the impact the zero-energy mode correction has

on the dynamics has little bearing on the visual results. We illustrate this with a cantilever beam

experiment in the supplemental video. Four cantilever beams attached to a wall swing under gravity,

with U = 0, U = 0.01, U = 0.1 and U = 1, respectively. Although, we can observe a small change in

the swing frequency for increasing U , the e�ect is subtle.

To further demonstrate the added stability provided by our implicit zero-energy mode correction,

we compare it to the explicit method proposed by Ganzenmüller [2015] and also used by Peer et

al. [2018]. For this, we used a twisted beam test (see Figure 4) which provides both large deformations

and high stresses. The beam is composed of 18k particles with radius 0.025m using a Young’s

modulus of 10MPa and a Poisson’s ratio of 0.2. We chose the value of U (for our method) and

U ′ (for the method of Ganzenmüller) that gave the best simulation results. The simulation is run

with 1ms time steps. Our simulation required an average of 15.0ms per time step for the elasticity

solve. The elasticity solve using the method of Peer et al. (using the zero-energy mode correction of

Ganzenmüller) took on average 58.6ms per time step. While the explicit method by Ganzenmüller

fails to provide results without artifacts in such conditions, our implicit method produces stable

simulations with U = 10.

Sampling. To showcase our novel sampling method, we �rst compare it with the method proposed

by Jiang et al. [2015b] for two complex models (see Figure 5). For our sampling, we used a cohesion
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Fig. 4. Twisted beam experiment. Our implicit zero-energy mode correction successfully produces a stable
simulation (le�) while the explicit handling proposed by Ganzenmüller does not (right). Particles colored in
red experience very high velocity.

(a) Our method (b) Jiang et al. (c) Our method (d) Jiang et al.

Fig. 5. Comparison between our sampling method and the blue noise sampling method proposed by Jiang et
al. [2015b]. Our method generates a higher quality sampling for both the sculpture model with 215k particles
and the Standford armadillo model with 240k particles.

(a) 26k particles (b) 52k particles (c) 104k particles (d) 208k particles

Fig. 6. Dragon model discretized with our sampling technique using di�erent amounts of particles.

parameter of V = 4 and an adhesion parameter of W = 0.2. It is immediately apparent that our

sampling technique achieves a more densely packed and higher quality particle distribution,

especially in complex areas like the armadillo’s nose and the sculpture’s wings. In the accompanying

video we compare our sampling technique with a regular sampling in simulations of an armadillo

model with di�erent resolutions. When using regular sampling, artifacts occur at the ears and feet

due to degenerate particle con�gurations. The comparison shows that our method helps to reduce

the occurrence of such con�gurations and particles with low neighbor count. However, while our

method works well in practice and often avoids such con�gurations, there is no guarantee that

they can be avoided in every case.

In a second experiment we show our sampling technique for di�erent number of particles with

the dragon model (see Figure 6). Even for lower resolutions we can see how the thin features, such

as the dragon eye and the scales, are preserved.
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Walrus funnel. In this experiment, we pushed eight walrus models through a tight funnel (see

Figure 1 left) to demonstrate the stability and robustness of our method. The high pressure is

handled by our simulator in several instances: in the interior of the elastic bodies, on the contact

area between them and also in the interaction of the elastic bodies with the walls of the funnel and

with the water. The runtime of the stretch solver remains constant during the simulation regardless

of the strong deformations. Our proposed mesh skinning was used to generate the surface triangle

meshes from the particle data, which also proved to work with large deformations.

We used 30k particles for each of the eight walrus models and 1.2M �uid particles, all of them

with a radius of 0.025m. For the material parameters, we used a Young’s modulus of 0.4MPa, a

Poisson’s ratio of 0.2, a density of 800 kg/m3 for the elastic objects and a density of 1000 kg/m3 for

the �uid. For this scene the elasticity solve required an average of 310.1ms per time step, consisting

of 231.9ms for the stretching part and 78.2ms for the volume part. In comparison, the DFSPH

pressure solve required an average of 877.8ms per time step.

Water park. In our �nal experiment (see Figure 1 right) we demonstrate the coupling of deformable

bodies, rigid bodies and �uids (including a highly viscous �uid) using the SPH framework. In

addition, we show that our method is capable of simulating many objects in a single simulation. A

total of 10 deformable and 4 rigid objects are emitted sequentially, slide down waterslides and drop

down the stairs into a bowl, where they interact with water and a highly viscous �uid. Since there

are only 2 unique deformable models in the scene, we also only have to compute and store two

unique factorizations. We used a total of 833k particles for the �uid and a total of 252k particles for

the deformable objects. We used a Young’s modulus of 0.75MPa and a Poisson’s ratio of 0.4 for the

elastic objects.

10 CONCLUSION

We have seen that our operator splitting approach to simulating elastic solids with SPH can

improve robustness and increase simulation speed for many scenarios. In some experiments, we

observed more than 20 times faster simulations compared to state-of-the-art. Even for scenes

where our operator splitting scheme is not applicable — for example if non-linear material models

are required — our implicit zero-energy mode suppression could bene�t researchers developing

new SPH discretization methods. Similarly, our sampling algorithm produces high-quality particle

samplings for almost any purpose, and is therefore not limited to SPH simulators.

Our method relies on a precomputed sparse matrix factorization. This works very well for a wide

range of applications. However, as the number of particles per solid object grows very large, the

memory and runtime requirements associated with the direct solver eventually become prohibitive.

The point at which this occurs depends strongly on the problem and hardware, but our experiments

suggest that 64: particles is still a feasible number, and at this point also signi�cantly outperforms

the iterative variant. With abundant memory, it is likely that the method remains e�ective for larger

particle counts, but at some point the time and space complexity of the method will e�ectively

place a bound on the number of solid particles per body that can be simulated e�ciently. With the

intent to scale to larger systems, we wish to investigate a variant of domain decomposition in the

future, so that the factorization of the system matrix for each subdomain could be precomputed. In

addition, it would be senseful to explore an adaptive SPH discretization for the elastic bodies, so

that larger particles could be used in the interior and smaller ones at the surface, thereby reducing

the overall particle count needed to attain similar visual �delity.

Finally, like previous methods that use a pressure solver for solid-solid and �uid-solid cou-

pling [Becker et al. 2009; Peer et al. 2018; Solenthaler et al. 2007], the �nal elastic response of the

solid is inconsistent with respect to Poisson’s ratio. Whereas the elastic solve correctly respects
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Poisson’s ratio, our pressure solver will treat the solid objects as incompressible under compression.

Due to pressure clamping, the pressure solver will not counteract expansion, however. One possible

remedy might be to adapt an implicit pressure solver that allows for compression for this purpose

(e.g., [Gissler et al. 2020; Weiler et al. 2016]).
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